

GPM

Global Precipitation Measurement

JPL Planned Contribution to GPM

Eastwood Im, Ziad S. Haddad JPL 5/16/2001

Introduction

JPL planned contribution:

- Develop radar technologies which have potential to reduce radar mass and/or improve radar data quality
- Conduct field experiment and acquire data with the new dualfrequency (14/35-GHz) airborne rain radar for supporting GPM radar algorithm development and cal/val planning
- Perform radar observation and instrument design trade study
- Provide preliminary assessment of GPM precipitation radar-only and radar/radiometer combined algorithms
- Support the study of various mission architecture and design options

1: Develop Spaceborne Precipitation Radar Technologies

- Through the NASA Earth Science Technology Program, JPL has been developing advanced spaceborne rain radar technologies to support future spaceborne rain missions, such as Global Precipitation Mission (GPM)
- Accomplishments:
 - Prototyped the electronics subsystem for an integrated 14/35 GHz radar
 - Developed a real-time on-board rain data processor based on FPGA technology that performs 20 billion multiplications and 20 billion additions per second, a throughput equivalent to about 20 PCs working in parallel
 - Developed a highly compact, light-weight, dual-frequency, dual-polarization RF and digital subsystems based on VME architecture. These subsystems occupy only 6 slots in a standard VME card cage
 - Built a scanning dual-frequency reflector antenna to support the airborne operation of the electronics prototype
 - Developed an efficient adaptive scan algorithm for real-time identification of rain cell locations
 - Developed a conceptual design of a light-weight, wide-swath scanning, 5.3-m deployable antenna
 - Cross-track adaptive scan over ±37° to increase swath coverage
 - 2-km horizontal resolution at 450 km
 - ~100 kg

Advanced Precipitation Radar Technologies

Task 1: Develop instrument design and prototype critical rain radar hardware for airborne demonstration

Task 2: Develop a design for a light-weight, dual-frequency spaceborne precipitation radar antenna

Antenna Patterns at 0P S

Inflatable Antenna Structure

2: Airborne Precipitation Radar Experiments

- The Airborne Rain Mapping Radar (ARMAR) was developed in early 1990's
 - Operated on DC-8 with TRMM PR geometry and frequency
 - also provides dual-polarization and Doppler capabilities
 - Field experiments with ARMAR
 - TOGA-COARE (1993)
 - TEFLUN-B/CAMEX3 (1998)
 - KWAJEX (1999)
- The new dual-frequency airborne rain radar will participate in CAMEX-4 experiment (8-9/2001)
 - Will operate on DC-8 with the planned GPM radar geometry and frequency
 - Will support GPM radar algorithm development and calibration/validation planning
- Current status
 - The radar ground testing will be completed in May'01
 - Airborne engineering flights (20 hours) are scheduled for June'01

Examples of ARMAR Measurements and Science Results

- TRMM PR makes co-polarized measurements so some assumptions about location of melting ice are made in retrieving rain.
- ARMAR's dual-polarization measurements can be used to validate assumptions.
- ARMAR on the NASA DC-8 observed Hurricane Bonnie near North Carolina during CAMEX-3
- Lower panel is dual-polarization data, showing areas of possible melting ice.

Vertical axis is altitude above ocean; horizontal axis is distance along aircraft track. Hurricane eye is blue area to right of center in upper image, corresponding white area in lower image.

Non-Uniform Beamfilling Studies

- ARMAR's high resolution allowed effects of TRMM PR's 4 km resolution to be studied:
 - retrieve rain profile from ARMAR data and average to PR resolution
 - average ARMAR reflectivity to TRMM resolution and then retrieve rain
 - compare results over all TOGA COARE data to derive error statistics
 - Results in Durden et al., 1998, JTECH.

3: Radar Design Trade Studies

non-uniform beamfilling

10 mm/hr rain

10 111111/ 111 1α111	
Vertical	Reflectivity
Resolution (m	error (%)
10	-0.69
25	-1.70
50	-3.40
100	-6.74
150	-10.00
200	-16.30

12 14 & 24 GHz No bias = 5 dB 3 dB 1 dB Model 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Mean Normalized Rainrate

Vertical resolution vs. reflectivity error at 35 GHz

Adaptive scan to enable wide swath coverage

Dual-frequency to improve rain retrieval accuracy

4: Retrieval Algorithms

- Main goals:
 - water cycle => surface precipitation (benchmarks: GPI, SSM/I)
 - parametrize convection => latent heating profiles
- Main problems in the estimation process:
 - differentiating between (liquid) rain, hail, graupel, aggregates, snow
 - unknown Drop Size Distribution
 - radar attenuation
- Approach: Develop preliminary assessment of radar algorithms
 - Compile a representative cloud-model simulated storm database and synthesize corresponding "observations"
 - Synthesize 35-GHz "data" from TRMM estimated profiles
 - Analyze dual-frequency wind-profiler data to estimate DSD and synthesize corresponding "observations"
 - Implement various algorithms, apply them to the data and compile performance statistics

Principal Component Analysis of Vertical Hydrometeor Profiles

- Haddad et al. Have used Principal Component Analysis (PCA) on TRMM data and modeled outputs to understand vertical hydrometeors and latent heating:
 - First 4 eigenprofiles account for 90% of vertical variability of rain
 - First 2 graupel eigenprofiles account for > 85% of vertical variability of graupel
 - 1st snow eigenprofile accounts for > 90% of vertical variability of snow
 - First 7 latent heating eigenprofiles account for 80% of vertical variability of latent heating

- Currently studying optimal way to combine active and passive measurements to "sort out" frozen hydrometeors
 - Potential application to wide-swath radar coverage without concerns of surface clutter limitations

 E. G. Large variable set (along-track vertical slice from ARMAR degraded to 4-km resolution)

Reduced variable set (along-track vertical slice with same input ARMAR data as above)

Precipitation Retrieval with Radar Algorithm

Learned from TRMM that DSD and non-linearity are the major sources of error:

- DSD is a problem because $Z \sim D^6$ while $M \sim D^3$ (D has unknown distribution)
 - analyze TRMM field campaign data
 - quantify spatial and temporal variability of DSD parameters
 - account for DSD variability when performing the retrievals (to avoid turning a "white" uncertainty into a bias)

At 14 GHz, $\beta \sim 1.4$ and $\alpha \sim 0.25$

5: Support Mission and System Concept Tradeoffs

- JPL's Rapid Concurrent Engineering Design Team works closely with GSFC's IMDC will support GPM on:
 - Trade study of various mission architecture concepts
 - Review of the eventual baseline mission concept
 - Develop impact metrics on technology utilization
- Identify newer technologies which have the potential to reduce cost/risk, and/or improve science data return. Examples include:
 - Autonomous station-keeping to reduce operations and maintain precise altitudes or repeat passes
 - Advanced GPS technologies for precision position knowledge
 - Autonomous mission planning technologies for rapid, automated mission planning and coverage assessment

Cloud Profiling Radar for the CloudSat Mission

CPR in launch envelope

- CloudSat Mission is a 94-GHz spaceborne cloud radar mission
 - PI: G. Stephens (CSU)
- Partners: CSU, NASA (JPL, GSFC, KSC), CSA, USAF, science team, industries
- 94-GHz radar measures vertical cloud profiles
 - -28 dBZ detection sensitivity
 - 1.4 km horizontal resolution
 - 500 m vertical resolution
- GPM contributions:
 - Inputs to weather/climate models
 - Rain & cloud retrieval algorithms

Extended Interaction Klystron

HV Power Supply Breadboard Model

Collimating Antenna Full-Size Mode

17